无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

锂离子电池正极材料铌掺杂LiNiO2 的制备与电化学性能

  • 黄丽颖 ,
  • 陆冬楚 ,
  • 宁玉雪 ,
  • 胡婷婷 ,
  • 陈晴 ,
  • 黄国欣 ,
  • 苏静 ,
  • 文衍宣
展开
  • 广西大学化学化工学院,广西 南宁 530004
黄丽颖(2001— ),女,主要从事化工工艺和锂离子电池方面学习和研究;E-mail:1016519830@qq.com

收稿日期: 2022-05-31

  网络出版日期: 2022-11-23

基金资助

国家自然科学基金资助项目(51864005);广西自然科学基金(2018GXNSFDA281014);广西大学生创新实验项目(202110593197)

Preparation and electrochemical performance of Nb-doped LiNiO2 cathode material for lithium-ion batteries

  • Liying HUANG ,
  • Dongchu LU ,
  • Yuxue NING ,
  • Tingting HU ,
  • Qing CHEN ,
  • Guoxin HUANG ,
  • Jing SU ,
  • Yanxuan WEN
Expand
  • School of Chemistry and Chemical Engineering,Guangxi University,Nanning 530004,China

Received date: 2022-05-31

  Online published: 2022-11-23

摘要

为了提高LiNiO2的电化学性能,用固相反应法制备了铌掺杂LiNiO2材料,并用X射线衍射(XRD)分析、恒电流滴定技术(GITT)、电化学阻抗谱(EIS)等方法研究铌掺杂量对LiNiO2的结构和性能的影响。结果表明适量的铌(Nb)掺杂可以提高LiNiO2层状结构的有序程度,降低Li+/Ni2+混合程度,降低电荷转移阻抗,提高活性材料中锂离子的扩散系数。其中LiNi0.99Nb0.01O2在0.5C循环100次的容量保持率为91.4%,5C时放电比容量为143 mA·h/g。而未掺杂铌的LiNiO2在相同条件下的容量保持率和比容量仅为69.2%和127 mA·h/g。结果说明铌掺杂能够有效提高LiNiO2的电化学性能。

本文引用格式

黄丽颖 , 陆冬楚 , 宁玉雪 , 胡婷婷 , 陈晴 , 黄国欣 , 苏静 , 文衍宣 . 锂离子电池正极材料铌掺杂LiNiO2 的制备与电化学性能[J]. 无机盐工业, 2022 , 54(11) : 52 -58 . DOI: 10.19964/j.issn.1006-4990.2022-0270

Abstract

In order to improve the performance of LiNiO2,Nb-doped LiNiO2 was prepared by a solid-state reaction method.The effects of the amount of Nb-doping on the structure and performance of LiNiO2 were investigated by X-ray diffraction analysis(XRD),galvanostatic titration(GITT),electrochemical impedance spectroscopy(EIS) and other methods.Nb-doping could effectively improve the order degree of the layered structure,reduce Li+/Ni2+ mixing,reduce the charge transfer impedance,and increase the diffusion coefficient of Li+ in the active materials.Therefore,LiNi0.99Nb0.01O2 exhibited higher capacity retention(91.4% after 100 cycles at 0.5C) and better rate capability(143 mA·h/g at 5C).As a comparison,the data of bare LiNiO2 was 69.2% and 127 mA·h/g under the same conditions.These results further demonstrated that Nb-doping with a strong Nb—O bond,high valence stat,and larger ionic radius could effectively improve the performance of LiNiO2.

参考文献

1 况新亮,刘垂祥,熊朋.锂离子电池产业分析及市场展望[J].无机盐工业,2022,54(8):12-19,32.
1 KUANG Xinliang, LIU Chuixiang, XIONG Peng.Industry analysis and market prospect of lithium ion battery[J].Inorganic Chemicals Industry,2022,54(8):12-19,32.
2 陈港欣,孙现众,张熊,等.高功率锂离子电池研究进展[J].工程科学学报,2022,44(4):612-624.
2 CHEN Gangxin, SUN Xianzhong, ZHANG Xiong, et al.Progress of high-power lithium-ion batteries[J].Chinese Journal of Engineering,2022,44(4):612-624.
3 栗志展,秦金磊,梁嘉宁,等.高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J].储能科学与技术,2021.Doi:10.19799/j.cnki.2095-4239.2021.0595.
3 LI Zhizhan, QIN Jinlei, LIANG Jianing, et al.High-nickel ternary layered cathode materials for lithium-ion batteries:Research progress,challenges and improvement strategies[J].Energy Storage Sci-ence and Technology,2021.Doi:10.19799/j.cnki.2095-4239.2021.0595.
4 谢元,李俊华,王佳,等.锂离子电池三元正极材料的研究进展[J].无机盐工业,2018,50(7):18-22.
4 XIE Yuan, LI Junhua, WANG Jia, et al.Research progress in ternary cathode material of lithium ion batteries[J].Inorganic Chemicals Industry,2018,50(7):18-22.
5 VORONINA N, SUN Y K, MYUNG S T.Co-free layered cathode materials for high energy density lithium-ion batteries[J].ACS Energy Letters,2020,5(6):1814-1824.
6 WANG Lifan, WANG Jingyue, WANG Leiying, et al.A critical review on nickel-based cathodes in rechargeable batteries[J].International Journal of Minerals,Metallurgy and Materials,2022,29(5):925-941.
7 BIANCHINI M, ROCA-AYATS M, HARTMANN P, et al.There and back again:The journey of LiNiO2 as a cathode active material[J].Angewandte Chemie International Edition,2019,58(31):10434-10458.
8 OH P, YUN J, PARK S, et al.Recent advances and prospects of atomic substitution on layered positive materials for lithium-ion battery[J].Advanced Energy Materials,2021,11(15).Doi:10.1002/aenm.202003197.
9 CAO Haishang, DU Fanghui, ADKINS J, et al.Al-doping induced superior lithium ion storage capability of LiNiO2 spheres[J].Ceramics International,2020,46(12):20050-20060.
10 KONG Xiangze, LI Donglin, FEDOROVSKAYA E O, et al.New insights in Al-doping effects on the LiNiO2 positive electrode material by a sol-gel method[J].International Journal of Energy Research,2021,45(7):10489-10499.
11 KONG Xiangze, LI Donglin, LAHTINEN K, et al.Effect of copper-doping on LiNiO2 positive electrode for lithium-ion batteries[J].Journal of the Electrochemical Society,2020,167(14).Doi:10.1149/1945-7111/abc8c1.
12 CHEN Yongxiang, LI Yunjiao, TANG Shuyun, et al.Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage[J].Journal of Power Sources,2018,395: 403-413.
13 TIAN Feng, ZHANG Yongzheng, LIU Zhongzhu, et al.Investigation of structure and cycling performance of Nb5+ doped high-nickel ternary cathode materials[J].Solid State Ionics,2021,359.Doi:10.1016/j.ssi.2020.115520.
14 YOON C S, KIM U H, PARK G T, et al.Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping[J].ACS Energy Letters,2018,3(7):1634-1639.
15 LV Congjie, YANG Jing, PENG Yi, et al.1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery[J].Electrochimica Acta,2019,297: 258-266.
16 XIN Fengxia, ZHOU Hui, ZONG Yanxu, et al.What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries?[J].ACS Energy Letters,2021,21: 1377-1382.
17 LEVARTOVSKY Y, CHAKRABORTY A, KUNNIKURUVAN S, et al.Enhancement of structural,electrochemical,and thermal properties of high-energy density Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li-ion batteries by niobium doping[J].ACS Applied Materials & Interfaces,2021,13(29):34145-34156.
18 CHU Binbin, YOU Longzhen, LI Guangxin, et al.Revealing the role of W-doping in enhancing the electrochemical performance of the LiNi0.6Co0.2Mn0.2O2 cathode at 4.5 V[J].ACS Applied Materials & Interfaces,2021,13(6):7308-7316.
19 CHEN Tao, LI Xiang, WANG Hao, et al.The effect of gradient boracic polyanion-doping on structure,morphology,and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J].Journal of Power Sources,2018,374: 1-11.
20 WU Jiefan, LIU Hongguang, YE Xuehai, et al.Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cut-off voltage for lithium-ion battery[J].Journal of Alloys and Compounds,2015,644: 223-227.
21 胡康,周友元,陈威,等.铌掺杂对LiNi0.8Co0.1Mn0.1O2正极材料结构和电化学性能的影响[J].矿冶工程,2019,39(3):110-112,118.
21 HU Kang, ZHOU Youyuan, CHEN Wei, et al.Influence of Nb-doping on the electrochemical characteristics and structure of LiNi0.8Co0.1Mn0.1O2 [J].Mining and Metallurgical Engineering,2019,39(3):110-112,118.
22 LEI Yike, AI Jinjin, YANG Shuai, et al.Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material:Effect on the cycling stability and voltage decay at high rates[J].Journal of the Taiwan Institute of Chemical Engineers,2019,97: 255-263.
23 ZHANG Qianru, WANG Ruo, ZHANG Tesen, et al.Improving electrochemical performance and thermal stability of LiNi0.8Co0.1Mn0.1O2 via a concentration gradient Nb doping[J].Ionics,2020,26(12):5971-5979.
24 GABER??EK M.Understanding Li-based battery materials via electrochemical impedance spectroscopy[J].Nature Communications,2021,12.Doi:10.1038/s41467-021-26894-5.
文章导航

/