无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

钴掺杂聚合氮化碳光催化还原二氧化碳性能研究

  • 李佳慧 ,
  • 王欢 ,
  • 李克艳 ,
  • 郭新闻
展开
  • 大连理工大学化工学院精细化工国家重点实验室,辽宁 大连 116024
李佳慧(1997— ),女,硕士研究生,研究方向为光催化二氧化碳转化;E-mail:ljh17854232276@163.com

收稿日期: 2022-02-04

  网络出版日期: 2022-11-23

基金资助

兴辽英才计划(XLYC2008032)

Study on photocatalytic CO2 reduction performance of Co doped polymeric carbon nitride

  • Jiahui LI ,
  • Huan WANG ,
  • Keyan LI ,
  • Xinwen GUO
Expand
  • State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China

Received date: 2022-02-04

  Online published: 2022-11-23

摘要

聚合氮化碳(CN)具有可见光响应、化学性质稳定、廉价易得、无毒等优点,在光催化领域得到了广泛的研究和应用,但是存在比表面积较小、电子-空穴对易复合等不足之处,严重限制了其光催化性能。以尿素和常见的两种钴盐[CoCl2和Co(NO32]为前驱体,通过一步煅烧法制备了钴(Co)掺杂CN,研究了不同Co源对材料光催化还原二氧化碳(CO2)性能的影响。实验证明,由适量氯化钴(CoCl2)为Co源得到的Co掺杂CN,其光催化还原CO2生成一氧化碳(CO)的速率可由纯CN的82.7 μmol/(g·h)提升至374.5 μmol/(g·h),同时CO选择性由79.1%提高至88.5%;而以硝酸钴[Co(NO32]为Co源得到的Co掺杂CN倾向于产氢,其光催化还原CO2性能基本不能得到提升。通过对光催化剂进行电感耦合等离子体(ICP)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电镜(SEM)、物理吸附和光电化学测试等表征,分析了材料的结构以及光催化性能提升的原因。

本文引用格式

李佳慧 , 王欢 , 李克艳 , 郭新闻 . 钴掺杂聚合氮化碳光催化还原二氧化碳性能研究[J]. 无机盐工业, 2022 , 54(11) : 124 -130 . DOI: 10.19964/j.issn.1006-4990.2022-0222

Abstract

Polymeric carbon nitride(CN) has been widely studied and applied in the field of photocatalysis benefiting from its visible light response,high chemical stability,low cost,easy preparation and non-toxicity.However,its shortcomings,such as small specific surface area and easy recombination of electron-hole pairs,seriously limit its photocatalytic performance.Co doped CN was prepared by one-step calcination of urea and two widely used cobalt salts[CoCl2 and Co(NO32] as precursors,and the effects of different Co sources on the photocatalytic CO2 reduction performance of the products were studied.The results showed that the photocatalytic CO2 reduction performance of CN doped with appropriate amount of Co by using CoCl2 as Co source was improved.The CO generation rate was increased from 82.7 μmol/(g·h)for pure CN to 374.5 μmol/(g·h),and the CO selectivity was increased from 79.1% to 88.5%.By contrast,Co doped CN using Co(NO32 as Co source was tended to produce hydrogen,and its photocatalytic CO2 reduction performance was not improved.The photocatalysts were characterized by inductively coupled plasma(ICP),X-ray diffraction(XRD),fourier infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),UV-Vis diffusion reflection spectroscopy(UV-Vis DRS),scanning electron microscopy(SEM),physical adsorption,photoelectrochemical test and etc.,and the material structure and the reasons for the improvement of the photocatalytic performance were analyzed.

参考文献

1 李书文,周严,汪铁林.BiVO4/rGO复合物的制备及其光催化还原CO2研究[J].无机盐工业,2019,51(11):82-87.
1 LI Shuwen, ZHOU Yan, WANG Tielin.Study on preparation and photocatalysis-reduction for CO2 of BiVO4/rGO composite[J].Inorganic Chemicals Industry,2019,51(11):82-87.
2 唐兰勤,贾茵,朱志尚,等.光催化二氧化碳还原研究进展[J].物理学进展,2021,41(6):254-263.
2 TANG Lanqin, JIA Yin, ZHU Zhishang, et al.Development of functional materials for photocatalytic reduction of CO2 [J].Progress in Physics,2021,41(6):254-263.
3 RICHTER R, MING Tingzhen, DAVIES P, et al.Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis[J].Progress in Energy and Combustion Science,2017,60: 68-96.
4 CAO Shaowen, LOW J, YU Jiaguo, et al.Polymeric photocatalysts based on graphitic carbon nitride[J].Advanced Materials,2015,27(13):2150-2176.
5 LI Zhou, ZHANG Huayang, SUN Hongqi, et al.Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis:A historic review[J].Catalysis Science&Technology,2016,6: 7002-7023.
6 HUANG Peipei, HUANG Jiahao, PANTOVICH S A, et al.Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation[J].Journal of the American Chemical Society,2018,140(47):16042-16047.
7 班昌胜,李军,金央,等.超分子前体制备g-C3N4/g-C3N4同质结及光催化性能研究[J].无机盐工业,2022,54(3):125-131.
7 BAN Changsheng, LI Jun, JIN Yang, et al.Study on preparation of g-C3N4/g-C3N4 homojunction by supramolecular precursor and its photocatalytic property[J].Inorganic Chemicals Industry,2022,54(3):125-131.
8 李佳慧,李克艳,宋春山,等.聚合氮化碳的制备、改性及光催化还原二氧化碳性能研究[J].无机盐工业,2021,53(12):21-28.
8 LI Jiahui, LI Keyan, SONG Chunshan, et al.Study on preparation,modification and carbon dioxide photocatalytic reduction performance of polymeric carbon nitride[J].Inorganic Chemicals Industry,2021,53(12):21-28.
9 CHANG Fei, XIE Yunchao, LI Chenlu, et al.A facile modification of g-C3N4 with enhanced photocatalytic activity[J].Applied Surface Science,2013,280: 967-974.
10 LUO Lei, ZHANG Anfeng, JANIK M J, et al.Facile fabrication of metal-free urchin-like g-C3N4 with superior photocatalytic activity[J].RSC Advances,2016,97(6):94496-94501.
11 YANG Xiaohang, GUO Zilong, ZHANG Xiaoyu, et al.The effect of indium doping on the hydrogen evolution performance of g-C3N4 based photocatalysts[J].New Journal of Chemistry,2021,45(2):544-550.
12 JIANG Longbo, YANG Jinjuan, YUAN Xingzhong, et al.Defect engineering in polymeric carbon nitride photocatalyst:Synthesis,properties and characterizations[J].Advances in Colloid and Interface Science,2021,296.Doi:10.1016/j.cis.2021.102523.
13 CAO Shihai, CHEN Huan, JIANG Fang, et al.Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride na-nosheets as a gaseous product from thermal polymerization of urea[J].Applied Catalysis B:Environmental,2018,224: 222-229.
14 ZHOU Sheng, LIU Ying, LI Jianmei, et al.Facile in situ synthesis of graphitic carbon nitride(g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO[J].Applied Catalysis B:Environmental,2014,158/159: 20-29.
15 ZHANG Xiandi, YAN Jia, ZHENG Fangyuan, et al.Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction[J].Applied Catalysis B:Environmental,2021,286.Doi:10.1016/j.apcatb.2021.119879.
16 LONG Mingce, CAI Weimin, CAI Jun, et al.Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J].ChemInform,2007,38(4).Doi:10.1002/chin.200704017.
17 WANG Yiou, MUSTAFA K B, SAVIO J A M, et al.Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water[J].Energy&Environmental Science,2017,10.Doi:10.1039/C7EE01109A.
18 JIANG Wenjun, RUAN Qiushi, XIE Jijia, et al.Oxygen-doped carbon nitride aerogel:A self-supported photocatalyst for solar-to-chemical energy conversion[J].Applied Catalysis B:Environmental,2018,236: 428-435.
19 Li W, Li W, Guo Z, et al.Synthesis of atomically thin g-C3N4 nanosheets via supercritical CO2 doping with single-atom cobalt for photocatalytic hydrogen evolution[J].ACS Applied Materials & Interfaces,2021.Doi:10.1021/acsami.1c13933.
20 ZHANG Zishu, GAO Ying, LI Peng, et al.Highly sensitive fluorescence detection of chloride ion in aqueous solution with Ag-modified porous g-C3N4 nanosheets[J].Chinese Chemical Letters,2020,31(10):2725-2729.
21 宛刚.过渡金属单原子电催化剂的可控制备和性能研究[D].上海:中国科学院大学(中国科学院上海硅酸盐研究所),2018.
21 WAN Gang.Towards the structural and catalytic evolution in transition-metal-centered single-site electrocatalysts:Controlled synthesis and electrocatalytic properties[D].Shanghai:Shanghai Institute of Ceramics,Chinese Academy of Sciences,2018.
22 XU Jiaqi, JU Zhengyu, ZHANG Wei, et al.Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nano-sheets[J].Angewandte Chemie International Edition,2021,60(16):8705-8709.
23 ZHAI Qingge, XIE Shunji, FAN Wenqing, et al.Photocatalytic conversion of carbon dioxide with water into methane:Platinum and copper(I) oxide co-catalysts with a core-shell structure[J].Angewandte Chemie,2013,125(22):5888-5891.
24 LIU Tongyao, HAO Lin, BAI Liqi, et al.Z-scheme junction Bi 2O2(NO3)(OH)/g-C3N4 for promoting CO2photoreduction[J].Chemical Engineering Journal,2022,429.Doi:10.1016/j.cej.2021.132268.
25 YANG Xi, TIAN Zhen, CHEN Yufang, et al.In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer[J].Journal of Alloys and Compounds,2021,859.Doi:10.1016/j.jallcom.2020.157754.
文章导航

/