无机盐工业

无机盐工业 ›› 2023, Vol. 55 ›› Issue (3): 10-20.doi: 10.19964/j.issn.1006-4990.2022-0187

• 综述与专论 • 上一篇    下一篇

半导体核壳材料光催化剂分解水制氢研究进展

李亮荣1(), 杨小喆1, 陈楚欣1, 刘艳1, 张梦玲2, 丁永红1()   

  1. 1.南昌大学抚州医学院,江西 抚州 344000
    2.南昌大学共青学院,江西 九江 332000
  • 收稿日期:2022-04-28 出版日期:2023-03-10 发布日期:2023-03-17
  • 通讯作者: 丁永红(1971— ),女,副教授,主要从事无机材料研究;E-mail:yonghong71@163.com
  • 作者简介:李亮荣(1986— ),男,副教授,主要从事生物制氢和聚酰亚胺材料研究;E-mail:ncurong@163.com
  • 基金资助:
    江西省教育厅科技项目(GJJ2203405);南昌大学抚州医学院重点科技项目(FYKJ202203)

Research progress of photocatalytic water splitting of semiconductor core-shell materials for hydrogen production

LI Liangrong1(), YANG Xiaozhe1, CHEN Chuxin1, LIU Yan1, ZHANG Mengling2, DING Yonghong1()   

  1. 1. Fuzhou Medical College of Nanchang University,Fuzhou 344000,China
    2. Gongging College of Nanchang University,Jiujiang 332000,China
  • Received:2022-04-28 Online:2023-03-10 Published:2023-03-17

摘要:

光催化剂催化分解水制氢是一种将太阳能有效转化为氢能的绿色途径,其中半导体核壳材料光催化剂在太阳能分解水制氢中表现出优异的性能。主要从半导体材料改性角度出发,综述和评论了国内外半导体核壳材料光催化剂分解水制氢的最新研究进展。重点阐述了常见氧化物、氮氧化物、氮化物及硫化物核壳材料半导体光催化剂分解水制氢的基本原理和改性效果等。分析了掺杂离子、构建异质结、负载助催化剂等改性方法在改变光催化剂禁带宽度、降低光生载流子复合几率、加快光生电荷传输速率和增加制氢活性位点等方面的影响。提出未来分解水制氢光催化剂可深入开发晶面依赖纳米复合光催化材料、助剂改性光催化材料、新型光催化半导体材料的研究方向。

关键词: 半导体, 核壳结构, 光催化, 制氢

Abstract:

Photocatalytic decomposition of water to hydrogen is a green way to effectively convert solar energy to hydrogen energy.Among them,semiconductor core-shell photocatalyst shows excellent performance in solar decomposition of water to hydrogen.From the perspective of semiconductor material modification,the latest research progress of hydrogen production from water decomposition by semiconductor core-shell photocatalyst at home and abroad was reviewed and commented.The basic principles and modification effects of common oxides,nitrogen oxides,nitrides and sulfide core-shell semiconductor photocatalysts in hydrogen production from water decomposition were emphatically expounded.The effects of modification methods such as doping ions,constructing heterojunctions and loading co-catalysts on changing the band gap of photocatalyst,reducing the recombination probability of photogenerated carriers,accelerating the transmission rate of photogenerated charges and increasing the active sites of hydrogen production were analyzed.It was proposed that the future research direction of hydrogen production from water decomposition photocatalyst could be further developed for crystal-plane-dependent nano-composite photocatalytic materials,auxiliary-modified photocatalytic materials and new photocatalytic semiconductor materials.

Key words: semiconductor, core-shell structure, photochemical catalysis, hydrogen production

中图分类号: